MATH2259 - Differential Equations | Credits: | 4 (4/0/0) | |--------------------|--| | Description: | This course includes first and second order differential equations with applications in physics, electrical engineering and chemistry. It also includes Laplace transforms, matrices, series solutions and systems of differential equations. | | Prerequisites: | • MATH2231 | | Corequisites: | | | Pre/Corequisites*: | | | Competencies: | Solve first-order differential equations. Express a real-life system or a phenomenon as a mathematical model. Solve linear differential equations of order two or higher. Express a dynamical system as a mathematical model. Apply the Laplace Transform to solve differential equations. Solve linear higher-order differential equations with variable coefficients using power series. Solve systems of differential equations by the elimination method. Solve systems of linear first-order differential equations. Express real-life applications as systems of first-order differential equations. Use direction fields to illustrate solutions of differential equations. Apply the Existence and Uniqueness Theorem. Apply Euler's Method to approximate solutions to differential equations. | | MnTC goal areas: | None | ^{*}Can be taking as a Prerequisite or Corequisite.